A Solution Approach for the Joint Order Batching and Picker Routing Problem in a Two-Block Layout
نویسندگان
چکیده
Order Batching and Picker Routing Problems arise in warehouses when articles have to be retrieved from their storage location in order to satisfy a given demand specified by customer orders. The Order Batching Problem includes the grouping of a given set of customer orders into feasible picking orders such that the total length of all picker tours is minimized. The problem of determining the sequence according to which articles have to be picked is known as the Picker Routing Problem. Although these problems occur at the same planning level, it is common to solve these problems not simultaneously, but separately and in sequence. As for the batching problem it is usually assumed that the order pickers, when making their ways through the warehouse, follow a certain, simple routing strategy. Based on this routing strategy, the customer orders are grouped into picking orders. The advantage of this approach can be seen in the fact that – in particular for single-block warehouse layouts – the corresponding order picker tours are very straightforward and can be memorized easily by the order pickers. This advantage diminishes, however, when more complex, multi-block layouts have to be dealt with. Furthermore, in such case, the approach may result in picker tours that can be far from optimal. Therefore, for multi-block layouts, we develop a new approach, namely an iterated local search algorithm into which different routing algorithms have been integrated and which allows for solving the Order Batching Problem and the Picker Routing Problem simultaneously. By means of numerical experiments it is shown that this approach results in a substantial improvement of the solution quality without increasing computing times.
منابع مشابه
Integrated Order Batching and Distribution Scheduling in a Single-block Order Picking Warehouse Considering S-Shape Routing Policy
In this paper, a mixed-integer linear programming model is proposed to integrate batch picking and distribution scheduling problems in order to optimize them simultaneously in an order picking warehouse. A tow-phase heuristic algorithm is presented to solve it in reasonable time. The first phase uses a genetic algorithm to evaluate and select permutations of the given set of customers. The seco...
متن کاملJoint order batching and picker Manhattan routing problem
In picking product items in a warehouse to fulfill customer orders, a practical way is to classify similar orders as the same batch and then to plan the optimal picker routing when picking each batch of items. Different from the previous problems, this work investigates the joint order batching and picker Manhattan routing problem, which simultaneously determines the optimal order batching allo...
متن کاملOptimally solving the joint order batching and picker routing problem
In this work we investigate the problem of order batching and picker routing in storage areas. These are labour and capital intensive problems, often responsible for a substantial share of warehouse operating costs. In particular, we consider the case of online grocery shopping in which orders may be composed of dozens of items. We present a formulation for the problem based on an exponential n...
متن کاملData-driven warehouse optimization: deploying skills of order pickers
Batching orders and routing order pickers is a commonly studied problem in many picker-to-parts warehouses. The impact of individual differences in picking skills on performance has received little attention. In this paper, we show that taking into account differences in the skills of individual pickers when assigning work has a substantial effect on total batch execution time and picker produc...
متن کاملA JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS
Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...
متن کامل